The Drosophila Huntington's disease gene ortholog dhtt influences chromatin regulation during development.
نویسندگان
چکیده
Huntington's disease is an autosomal dominant neurodegenerative disorder caused by a CAG expansion mutation in HTT, the gene encoding huntingtin. Evidence from both human genotype-phenotype relationships and mouse model systems suggests that the mutation acts by dysregulating some normal activity of huntingtin. Recent work in the mouse has revealed a role for huntingtin in epigenetic regulation during development. Here, we examine the role of the Drosophila huntingtin ortholog (dhtt) in chromatin regulation in the development of the fly. Although null dhtt mutants display no overt phenotype, we found that dhtt acts as a suppressor of position-effect variegation (PEV), suggesting that it influences chromatin organization. We demonstrate that dhtt affects heterochromatin spreading in a PEV model by modulating histone H3K9 methylation levels at the heterochromatin-euchromatin boundary. To gain mechanistic insights into how dhtt influences chromatin function, we conducted a candidate genetic screen using RNAi lines targeting known PEV modifier genes. We found that dhtt modifies phenotypes caused by knockdown of a number of key epigenetic regulators, including chromatin-associated proteins, histone demethylases (HDMs) and methyltransferases. Notably, dhtt strongly modifies phenotypes resulting from loss of the HDM dLsd1, in both the ovary and wing, and we demonstrate that dhtt appears to act as a facilitator of dLsd1 function in regulating global histone H3K4 methylation levels. These findings suggest that a fundamental aspect of huntingtin function in heterochromatin/euchromatin organization is evolutionarily conserved across phyla.
منابع مشابه
Inactivation of Drosophila Huntingtin affects long-term adult functioning and the pathogenesis of a Huntington's disease model.
A polyglutamine expansion in the huntingtin (HTT) gene causes neurodegeneration in Huntington's disease (HD), but the in vivo function of the native protein (Htt) is largely unknown. Numerous biochemical and in vitro studies have suggested a role for Htt in neuronal development, synaptic function and axonal trafficking. To test these models, we generated a null mutant in the putative Drosophila...
متن کاملDrosophila Models of Huntington's Disease Exhibit Sleep Abnormalities
The complex pathology of neurodegenerative diseases presents a challenge to researchers who model the disease, and clinicians who treat patients. The identification of early, perhaps even prodromal, biomarkers is important for developing strategies to ameliorate disease progression. Sleep disturbances are a clinical feature of Huntington's disease (HD) as well as a part of normal aging. Whether...
متن کاملProtective role of Engrailed in a Drosophila model of Huntington's disease.
Huntington's disease (HD) is caused by the expansion of the polyglutamine (polyQ) tract in the human Huntingtin (hHtt) protein (polyQ-hHtt). Although this mutation behaves dominantly, htt loss of function may also contribute to HD pathogenesis. Using a Drosophila model of HD, we found that Engrailed (EN), a transcriptional activator of endogenous Drosophila htt (dhtt), is able to prevent aggreg...
متن کاملHunting for the function of Huntingtin.
the gene responsible for HD (HTT) was cloned, representing a major breakthrough in the field. HTT encodes a large protein that was named Huntingtin (Htt). The N-terminal portion of Htt contains a stretch of glutamines (the polyQ tract) and HD patients harbor pathogenic polyQ expansions (Andrew et al., 1993; Bates et al., 1998). Although the polyQ length can vary, all healthy individuals have fe...
متن کاملThe histone acetyltransferases CBP and Chameau integrate developmental and DNA replication programs in Drosophila ovarian follicle cells.
DNA replication origin activity changes during development. Chromatin modifications are known to influence the genomic location of origins and the time during S phase that they initiate replication in different cells. However, how chromatin regulates origins in concert with cell differentiation remains poorly understood. Here, we use developmental gene amplification in Drosophila ovarian follic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2015